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Abstract We start with a rather detailed, general discussion of recent results of the replica
approach to statistical mechanics of a single classical particle placed in a random N(�1)-
dimensional Gaussian landscape and confined by a spherically symmetric potential suitably
growing at infinity. Then we employ random matrix methods to calculate the density of sta-
tionary points, as well as minima, of the associated energy surface. This is used to show that
for a generic smooth, concave confining potentials the condition of the zero-temperature
replica symmetry breaking coincides with one signaling that both mean total number of sta-
tionary points in the energy landscape, and the mean number of minima are exponential
in N . For such systems the (annealed) complexity of minima vanishes cubically when ap-
proaching the critical confinement, whereas the cumulative annealed complexity vanishes
quadratically. Different behaviour reported in our earlier short communication (Fyodorov
et al. in JETP Lett. 85:261, 2007) was due to non-analyticity of the hard-wall confinement
potential. Finally, for the simplest case of parabolic confinement we investigate how the
complexity depends on the index of stationary points. In particular, we show that in the
vicinity of critical confinement the saddle-points with a positive annealed complexity must
be close to minima, as they must have a vanishing fraction of negative eigenvalues in the
Hessian.

1 Introduction and General Discussion

After more than three decades of intensive research, understanding statistical mechanics of
disordered systems still remains a considerable challenge to both theoretical and mathemat-
ical physics communities. In the situations where an interplay between thermal fluctuations
and those due to quenched disorder is essential, one of the central problems is to find the
averaged value of the free energy of the system as a function of temperature T . Namely,
given an energy function which assigns a random value H(x) to every point x ∈ Σ of a
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given configuration space Σ , the task is to calculate

F = −T 〈lnZβ〉, Zβ =
∫

Σ

exp−βH(x) dx. (1)

Here and henceforth the angular brackets stand for the disorder averaging, β = 1/T is the
inverse temperature, and Zβ is known as the partition function. In the case when the config-
uration space consists of discrete points (e.g. the hypercube Σ = {−1,1}N ) the integration
is replaced by an appropriate summation.

Confronted with the problem of performing such a calculation explicitly, theoretical
physicists almost invariably choose to employ the so-called replica trick—a powerful, yet
heuristic way of extracting the above average from the positive integer moments of the par-
tition function. The trick amounts to exploitation of the formal identity

〈lnZβ〉 = lim
n→0

1

n
ln〈Zn

β〉, Zn =
∫

RN

e−β
∑n

a=1 H(xa)

n∏
a=1

dxa. (2)

Indeed, assuming the distribution of random energies H(x) to be Gaussian with the pre-
scribed covariance in the configuration space, the moments can be readily calculated for all
values n = 1,2, . . . . Unfortunately, for all systems of interest those moments grow too fast
with n to allow a unique restoration of the probability distribution of the partition function,
hence prohibiting the honest evaluation of the expectation value of the logarithm. Yet, physi-
cists managed to employ their fine intuition and developed a refined and efficient heuristic
machinery of performing a mathematically ill-defined continuation n → 0. In this way they
were able to reconstruct highly nontrivial patterns of behaviour typical for disordered sys-
tems, the most intricate scenario being based on the notion of Replica Symmetry Breaking
(RSB). According to that scenario first developed by Parisi in the context of the so-called
mean-field models of spin glasses, see [1] as the standard reference and [2] for a recent
account, below a certain transition temperature (frequently referred to as the de-Almeida-
Thouless [3] temperature) the Boltzmann-Gibbs measure on the configuration space is effec-
tively decomposed into a multitude of the so-called “equilibrium states” (this phenomenon
is frequently referred to as an ergodicity breaking). The number of those states is argued to
grow exponentially with the number of effective degrees of freedom, and they are believed
to be organized in the configuration space in an intricate hierarchical way. Essentially, the
structure is thought to represent a picture of valleys within valleys within valleys, etc., in
an effective random (free) energy landscape [4] arising in such models. As that unusual
picture arose via the application of a somewhat problematic replica trick, it is important to
mention that a few rather nontrivial results emerging in the framework of the Parisi scenario
were recently recovered by rigorous mathematical methods. These important developments
are mainly due to recent seminal works by Talagrand [5, 6], based on earlier results by
Guerra [7], see also interesting works by Aizenman, Sims and Starr [8]. In particular, Ta-
lagrand was able to demonstrate that the equilibrium free energy emerging naturally in the
Parisi scheme of RSB is indeed the correct thermodynamic limit of the free energy, both for
the paradigmatic Sherrington-Kirkpatrick model [6], and for the so-called spherical model
of spin glasses [5].

One of the simplest, yet nontrivial representatives of a disordered system is arguably
a single classical particle placed in a superposition of a random Gaussian V (x) and a de-
terministic confining potential Vcon(x), with x ∈ Σ = R

N . It turned out to be a surpris-
ingly rich model, characterised by a non-trivial dynamical behaviour as well as interest-
ing thermodynamics. Works by Mezard and Parisi [9–11], and Engel [12] used the replica
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trick to calculate the free energy of such a system with the simplest, parabolic confine-
ment Vcon(x) = 1

2μx2,μ > 0 and after further employing the so-called Gaussian Variational
Ansatz (GVA) revealed the existence of a low-temperature phase with broken ergodicity.
They were followed by Franz and Mezard [13] and Cugliandolo and Le Doussal [14] pa-
pers on the corresponding dynamics revealing long-time relaxation, aging, and other effects
typical for glassy type of behaviour at low enough temperatures. The nature of the low-
temperature phase was found to be very essentially dependent on the type of correlations
in the random potential, specified via the covariance function chosen in the form ensuring
stationarity and well-defined large-N limit as

〈
V (x1)V (x2)

〉= Nf

(
1

2N
(x1 − x2)

2

)
, (3)

with brackets standing for the averaging over the Gaussian potential distribution. Namely,
if the covariance f (x) decayed to zero at large arguments, the description of the low tem-
perature phase was found to require only the so-called one-step replica symmetry breaking
(1RSB) Parisi pattern. In contrast, for the case of long-ranged correlated potentials with
f (x) growing with x as a power-law1 the full infinite-hierarchy Parisi scheme of replica
symmetry breaking (FRSB) had to be used instead.

Based on formal analogies with the Hartree-Fock method Mezard and Parisi [9–11] ar-
gued that GVA-based calculations should become exact in the limit of infinite spatial dimen-
sion N . In a recent paper [15] the replicated problem was reconsidered in much detail by
an alternative method which directly exposed the degrees of freedom relevant in the limit
N → ∞, and employed the Laplace (a.k.a. saddle-point) evaluation of the integrals. The
method allowed also to perform calculations for any fixed sample size |x|2 < L = R

√
N .

The effective radius R < ∞ can be used as an additional control parameter, and the results
in the limit R → ∞ and fixed μ > 0 indeed reproduced those obtained by GVA in [9, 12].
In addition, the research in [15] and the subsequent work [16] revealed the existence of a
non-trivial class of random potentials overlooked in earlier papers [9, 12], the simplest repre-
sentative being the case of logarithmically growing correlations f (x) = f0 − g2 ln (x + a2),
with f0, g, a being some positive constants. Indeed, for such a choice (and its generaliza-
tions [16]) the resulting free energy in the thermodynamic limit R → ∞ turns out to co-
incide precisely with that appearing in the celebrated Generalized Random Energy Model
(GREM) by Derrida [17–19], which is, in particular, known to describe directed polymers
on a tree with disordered potentials [20]. Moreover, by comparing the results of [16] with
earlier renormalization-group analysis of same system for finite dimensions 1 ≤ N < ∞,
see Carpentier and Le Doussal [21], it was conjectured that essentially the same type of be-
havior should survive in finite-dimensional systems. Note, that understanding the behaviour
of the model for finite N in full generality remains a challenging problem, see e.g. [23] for
a recent discussion.

According to a general wisdom, many peculiar features of systems with quenched disor-
der as compared to their more ordered counterparts are largely due to a multitude of nearly
degenerate (metastable) states making the associated (free) energy landscape extremely cor-
rugated, see e.g an insightful paper [22] trying to understand the gross structure of the en-
ergy landscapes describing elastic manifolds in presence of a random pinning potential. In
particular, for the paradigmatic mean-field models of spin glasses a considerable effort has

1To be more precise, at large separations 〈[V (x1) − V (x2)]2〉 ∝ (x1 − x2)2γ , 0 < γ < 1. However one can
easily satisfy oneself that the difference is immaterial for the free-energy calculations.
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gone into trying to understand what changes the intricate scenario of the replica symmetry
breaking interpreted as ergodicity breaking (see our earlier discussion of the Parisi scenario)
implies in the statistics of the associated free energy landscape (the so-called Thouless-
Anderson-Palmer (TAP) [4] variational functional). For an instructive review of the recent
efforts in this direction a reader may wish to look through [24], or to read directly represen-
tative original works on this topic [25–30].

For the model of interest for us in this paper—a single particle in a random Gaussian
potential—the necessity (and difficulty) of adequately taking into account multiple minima
in the energy landscape is well-known since the early work of Engel [31] who pointed out
a non-perturbative character of the problem. In fact, similar non-perturbative effects are be-
lieved to invalidate the famous “dimensional reduction” phenomenon in the random-field
Ising model, see [32, 33] and references therein. It is therefore important to develop meth-
ods and tools of statistical characterization of relevant features of N -dimensional random
energy landscapes. Ideally, one would like to obtain a detailed knowledge on typical posi-
tions and depths of various minima and their mutual correlations. In such a general formu-
lation the problem looks extremely challenging mathematically, although in the dimension
N = 1 considerable progress can be achieved [34].

Obviously, the first meaningful step in this direction consists of counting the expected
number of stationary points of different types (minima, maxima and saddles of various in-
dices). The simplest, yet already a non-trivial problem of this sort is to find the mean number
〈#s〉 of all stationary points, irrespective of their index. Assuming that the landscape is de-
scribed by a sufficiently smooth random function H of N real variables x = (x1, . . . , xN) the
problem amounts to finding all solutions of the simultaneous stationarity conditions ∂kH = 0
for all k = 1, . . . ,N , with ∂k standing for the partial derivative ∂

∂xk
. The total number #s(D)

of its stationary points in any spatial domain D is then given by #s(D) = ∫
D

ρs(x) dx, with
ρs(x) being the corresponding density of the stationary points. The ensemble-averaged value
of such a density can be found according to the multidimensional analogue of the so-called
Kac–Rice formula:

〈ρs(x)〉 =
〈∣∣det(∂2

k1,k2
H)
∣∣ N∏

k=1

δ(∂kH)

〉
, (4)

where δ(x) stands for the Dirac δ-function. For the original Kac and Rice papers in N = 1
see [36, 37], the multidimensional generalization can be found e.g. in [38] and [39], and
[40] contains further extensions and a proof in general setting. Note importance of keeping
the modulus in (4), as omitting it would yield instead of the density the object related to
the Euler characteristics of the surface, see [41] and discussions in [40] (see also the related
identity (10) below).

Similarly, if one is interested in counting only minima, the corresponding mean density
can be written as

〈ρm(x)〉 =
〈

det(∂2
k1,k2

H)θ(∂2
k1,k2

H)

N∏
k=1

δ(∂kH)

〉
. (5)

Here and henceforth we use the notation θ(x) for the Heaviside step-function, i.e. θ(x) = 1
for x > 0, and zero otherwise. The corresponding matrix θ -factor in (5) selects only station-
ary points with positive definite Hessians, which are minima.

In the context of the problematic of glassy systems calculation of those quantities for the
simplest case N = 1 were presented in [35]. Actually, low-dimensional cases N = (1,2,3)
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were known much earlier, starting from the classical papers by Longuet-Higgins on spec-
ular light reflection from a rough sea surface [42], and the work on laser speckle patterns
by Weinrib and Halperin [43]. The case N = 3 was also considered in early work [44] in
the context of behaviour of a quantum particle in a random potential, and recently in [45].
A useful summary of related efforts in various areas of applied mathematics and probability
theory can be found in a recent book by Adler and Taylor [40].

Random landscapes relevant in statistical physics are however mainly high-dimensional.
In particular, general interest in landscapes behind glass-forming mixtures of various types
led to a few numerical investigations of the structure of their critical points, see e.g.
[46–49]. Independently, interest in counting extrema of some random high-dimensional sur-
faces arose also in string theory where an effective string landscape is believed to possess a
huge number of possible minima, each of which could describe a potential universe, see [50]
for further discussion, references and actual calculations. At the same time, no analytical re-
sults on numbers of critical points were available for high-dimensional Gaussian landscapes
until very recently, before it was realized that obtaining them requires exploitation of well-
developed random-matrix based techniques [51]. For the N -dimensional Gaussian random
surface with parabolic confinement, i.e. for the function

Hpar (x) = μ

2
x2 + V (x), μ > 0 (6)

the total expected number of stationary points calculated from the Kac–Rice density (4)
turned out to be given by [51]:

〈#s〉 = 1

μN
〈|det(μÎN + Ĥ )|〉, (7)

where Ĥ stands for N × N Hessian matrix of second derivatives of the Gaussian part of
the potential: Hij ≡ ∂2

ijV (x) {(i, j) = 1, . . . ,N}, and ÎN for the identity matrix, and we
took into account that the distribution of the Hessian is position-independent due to trans-
lational invariance of the covariance function (3), see (8) below. We see that the problem
basically amounts to evaluating ensemble average of the absolute value of the characteristic
polynomial of a certain real symmetric random matrix, whose entries are centered Gaussian
variables due to the nature of the underlying potential V (x). The form of the covariance
function (3) implies after a simple calculation the following covariances of the entries Hij :

〈HilHjm〉 = f ′′(0)

N
[δij δlm + δimδlj + δilδjm], (8)

where here and henceforth in the paper the number of dashes indicates the number of deriv-
atives taken. This allows one to write down the density of the joint probability distribution
(JPD) of the matrix H explicitly as [51]

P(Ĥ )dĤ ∝ dĤ exp

{
− N

4f ′′(0)

[
Tr(Ĥ 2) − 1

N + 2
(TrĤ )2

]}
, (9)

where dĤ =∏1≤i≤j≤N dHij and the proportionality constant can be easily found from the

normalisation condition. Although such a JPD is invariant with respect to rotations Ĥ →
Ô−1Ĥ Ô by orthogonal matrices Ô ∈ O(N) it is apparently different from the standard
one typical for the so-called Gaussian Orthogonal Ensemble (GOE) of random symmetric
matrices (the standard introduction into the Random Matrix Theory is [52]). A peculiarity of
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this ensemble is particularly manifest via the following identity that holds for an arbitrary
fixed matrix Â [45]:

〈det(Â + Ĥ )〉 = detÂ. (10)

In particular, this identity gives another evidence for importance of keeping the modulus in
formulae like (7), where omitting the modulus would trivially yield unity due to (10). An
elegant general verification of (10) directly from (8) can be found in [45]. Alternatively, in
Appendix 1 we demonstrate its validity for real symmetric matrices by a specific method
exploiting the very meaning of the matrix Ĥ as the Hessian matrix, as the latter is related to
topological properties of the underlying gradient field.

In spite of all the mentioned peculiarities, actual evaluation of the ensemble average in
(7) can be reduced to the standard random matrix calculation of the GOE density and as
such can be performed in a closed form for any N in terms of Hermitian polynomials [51].
This is important, as the same method actually proved to be useful in other similar problems,
as e.g. the problem of determining the distribution of the maximum of a Gaussian random
field, see [53].

Large N asymptotics of the mean number of stationary points can be extracted from
known behavior of Hermite polynomials. The explicit calculation revealed [51] that the
replica symmetry breaking (interpreted in the standard way as ergodicity breaking) in the
zero-temperature limit of the R = ∞ version of the model with parabolic confinement is
accompanied by the emergence of an exponentially large mean total number of stationary
points in the energy landscape. As common wisdom was to expect that the low-temperature
thermodynamics should be dominated by minima rather than by the totality of stationary
points the issue called for further investigation, in particular in a general R < ∞ case. In
two recent short communications [54, 55] the calculations of [51] were independently and
essentially generalized in a way providing access to the densities of minima [55], as well as
to stationary points with an arbitrary index [54], and at a given value of the potential, hence
energy.

The results in [55] were given as a function of both parameters μ and R. That analysis
revealed that generally the domain of existence of the glassy phase with broken ergodicity
(at zero temperature T ) turns out to be always associated with the existence of exponentially
many stationary points in the energy landscape, but not necessarily exponentially many min-
ima. In an attempt to extend those considerations to finite temperatures the authors also con-
structed a simple variational functional providing an upper bound on the true free energy of
the μ > 0,R = ∞ version of the problem. Surprisingly, counting stationary points in that
simple-minded approximation was already enough to capture such a nontrivial feature as the
precise position of the de-Almeida-Thouless line in the whole (μ,T ) plane.

The aim of the present paper is to describe the random-matrix evaluation of landscape
complexities in a rather general setting. The calculations are performed for a broad class of
Gaussian landscapes V (x) with monotonically increasing, concave confining potentials, i.e.
for the energy functions

H(x) = NU

(
x2

2N

)
+ V (x), (11)

assuming U ′(z) > 0,U ′′(z) ≥ 0, ∀z ≥ 0, with the first (confining) term chosen in the
rotationally-invariant scaling form ensuring a well-defined large N limit of the model. Solv-
ing this problem will also be used as an opportunity to provide a rather detailed exposition
of the techniques sketched in our earlier short communication [55]. We will be able to treat
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in considerable generality the smooth confinement case, and compare it with non-analytic
(hard-wall) confinement studied in [55] (and independently by A. Bray and D. Dean in [54]).

Our main results can be briefly summarized as follows. Define the function

μ(z) = U ′
(

z

2

)
. (12)

We find that for a generic, smooth concave confining potentials U(z) with a continuous
derivative μ(z) the condition ensuring that the mean total number of stationary points in the
energy landscape is exponentially large in N coincides with one ensuring that the same is
true for the mean number of minima. Different behaviour of two complexities for a particle
confined in a finite box reported in [54, 55] is shown to be a consequence of non-analyticity
of the hard-wall confinement potential. For a smooth confinement the common condition
of positivity of the corresponding landscape complexities (defined as the logarithms of the
mean total number per degree of freedom N ) reads

μ

(
− f ′(0)

f ′′(0)

)
<
√

f ′′(0). (13)

As shown in Appendix 4, such an inequality is precisely the condition of instability of the
zero-temperature replica symmetric solution of the associated problem in statistical mechan-
ics,2 see (152). The corresponding annealed complexity of minima vanishes cubically when
approaching the critical confinement (60), whereas the cumulative annealed complexity van-
ishes quadratically with the distance to criticality. Finally, in the Appendix 5 we further
investigate, using the method due to Bray and Dean [54] the annealed complexities of sta-
tionary points at a fixed value of the index I (the number of the negative eigenvalues of the
Hessian). The calculation is performed for the simplest case of parabolic confinement (6),
when μ(z) = const = μ, hence (60) amounts to μ < μcr = √

f ′′(0). The results reveal that
the only stationary points with non-vanishing annealed complexity arising precisely at the
critical value μ = μcr are those for which the number of negative directions is not extensive:
limN→∞ I

N
= 0. As we move inside the glassy phase away from the critical value μ = μcr ,

stationary points with an increasing range of indices start to have a positive complexity.
In the Appendices 1, 2, and 3 we provide a few useful technical details, some of them

are not immediate to find in the available literature. We comment on the geometric fea-
tures of the landscapes behind the curious formula (10) in the Appendix 1, and discuss the
distribution of the diagonal element of the resolvent of a random GOE matrix in the Appen-
dix 2. In the Appendix 3 we provide a short overview of a powerful heuristic random-matrix
technique due to Dean and Majumdar [59] based on the functional integration. We found
this method indispensable when calculating the complexity of minima. Finally, a statistical-
mechanics calculation used for extracting the point of zero-temperature replica symmetry
breaking for the present class of models within the framework of the replica method is
sketched in the Appendix 4, and the calculation of complexity of stationary points with a
given (extensive) index is sketched in Appendix 5.

2This result, in particular, gives a kind of a posteriori justification of the use of the mean value of station-
ary points/extrema as sensible characteristics of high-dimensional landscapes. Indeed, in the ideal world we
would like to know the typical rather than the mean values, i.e. to replace “annealed” averages featuring in (4)
and (5) with the corresponding “quenched” ones. The latter would require performing the averaging of the
logarithm of the number of stationary points. Unfortunately, the present level of art in the field makes such a
quenched calculation hardly feasible.
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2 Complexity of Stationary Points Versus Complexity of Minima

2.1 The Density of Stationary Points for Spherically-Symmetric Potentials

Our goal is to study the density of stationary points of the function (11) around position
x, subject to the condition that the random part V (x) takes the prescribed value V . This is
given by a variant of the Kac–Rice formula (4):

〈
ρs(V ,x, [U ])〉=

〈∣∣∣∣det

[
∂2H
∂x∂x

]∣∣∣∣δ
(

∂H(x)

∂x

)
δ[V − V (x)]

〉
, (14)

where we used self-explanatory short-hand notations.
For the choice of the confining potential in (11) we obviously have for the gradient vector

and for the Hessian matrix

∂H
∂x

= xμ

(
x2

N

)
+ ∂V

∂x
, (15)

∂2H
∂x∂x

= μ

(
x2

N

)
ÎN + M̂(x) + ∂2V

∂x∂x
, (16)

where we used the function μ(z) defined according to (12), as well as N × N rank-one
matrix M̂(x) with entries expressed via components xi, i = 1, . . . ,N of x as

[M̂(x)]ij = xixj

N
U ′′
(

x2

2N

)
≡ 2

xixj

N
μ′
(

x2

N

)
. (17)

Note that for the parabolic confinement case (6) obviously μ(z) ≡ μ. We assume in the
subsequent analysis that μ(z) is non-decreasing: μ′(z) ≥ 0,∀z ≥ 0.

We find it also convenient to collect all disorder-dependent factors in the function

Fs(V ,x, K̂, [U ]) =
〈
δ[V − V (x)]δ

[
xμ

(
x2

N

)
+ ∂V

∂x

]
δ

[
K̂ − ∂2V

∂x∂x

]〉
(18)

and use the above expressions to rewrite the density (14) in the form

〈
ρs(V ,x, [U ])〉=

∫
dK̂

∣∣∣∣det

[
K̂ + ÎNμ

(
x2

N

)
+ M̂(x)

]∣∣∣∣F(V ,x, K̂, [U ]). (19)

In the rest of the calculations we assume that the covariance function f (x) in (3) has finite
values of the first two derivatives at the origin: |f ′(0)| < ∞ and |f ′′(0)| < ∞. Actually,
from the point of view of statistical mechanics such a condition ensures the existence of
a nontrivial phase transition at zero temperature, see (13). Note that in the case of long-
ranged potentials behaving like f (x) ∼ xγ with 0 < γ < 1 at large x this condition requires
imposing some regularization at small arguments, e.g. f (x) = (a + x)γ , a > 0.

Let us introduce the following notations for the subsequent use, remembering f ′(0) < 0:

μcr =√f ′′(0), Rcr =√|f ′(0)|/f ′′(0), g2 = f ′′(0) − f ′(0)2

f (0)
≥ 0. (20)

Our analysis of (18) starts with introducing the Fourier integral representation for each
of the delta-functional measures—of scalar, vector, and matrix argument, correspondingly.
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This step facilitates performing the ensemble average explicitly as averaging exponentials
containing terms linear with respect to Gaussian variables requires only the knowledge of
their covariances. In the course of this procedure one has to exploit a few identities which
follow from (3) after simple calculations, as well as from the expressions (8). Namely,

〈V 2(x)〉 = Nf (0),

〈
∂V

∂x
∂V

∂x

〉
= −f ′(0),

〈
V

∂V

∂x

〉
=
〈
∂V

∂x
∂2V

∂x∂x

〉
= 0, (21)

〈[
Tr

(
Â

∂2V

∂x∂x

)]2〉
= 1

N
f ′′(0)[2TrÂ2 + (TrÂ)2], (22)

〈
V (x)Tr

(
Â

∂2V

∂x∂x

)〉
= f ′(0)TrÂ,

〈(
a
∂V

∂x

)2〉
= −f ′(0)a2, (23)

where a and Â are an arbitrary N -component vector and an N × N real symmetric matrix,
respectively.

After these steps one can easily integrate out the scalar and vector Fourier variables as
they appear as simple quadratic terms in the exponential (the integration over the matrix
Fourier variable requires a little bit more care, and is done at the next step). Thus, we arrive
at the following expression:

F(V ,x, K̂, [U ]) ∝ exp

{
x2

2f ′(0)

[
μ

(
x2

N

)]2

− V 2

2Nf (0)

}
I(K̂) (24)

where I(K̂) stands for the integral over the remaining Fourier variables, that is over a real
symmetric N × N matrix P̂ , and is given by

I(K̂) =
∫

exp

{
−μ2

cr

N
TrP̂ 2 + iTrP̂

(
K̂ − f ′(0)

Nf (0)
V ÎN

)
− g2

2N
(TrP̂ )2

}
dP̂ . (25)

Here, and henceforth, we will systematically disregard various multiplicative constant fac-
tors for the sake of brevity. They can always be restored from the normalisation conditions
whenever necessary.

To deal with the remaining integral over the matrix P̂ in (25) in the most economic way
it is convenient to employ first a Gaussian integral over an auxiliary scalar variable t , and in
this way to “linearize” the last term in the exponential in (25):

e− g2

2N
(TrP̂ )2 =

(
N

2π

)1/2 ∫
e− N

2 t2±igt TrP̂ dt. (26)

Substituting this identity back into (25) converts the matrix integral into a standard Gaussian
one which can be immediately performed, yielding

F(V ,x, K̂, [U ]) ∝ exp

{
x2

2f ′(0)

[
μ

(
x2

N

)]2

− V 2

2Nf (0)

}

×
∫ ∞

−∞
e

− N
2 t2− N

4μ2
cr

Tr[K̂−(gt+ f ′(0)
f (0)

V
N

)ÎN ]2
dt. (27)

Before substituting this expression back into (19), we find it convenient to rescale coor-
dinates and the value of the potential as x → √

Nx and V → NV , and to introduce two
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matrices Ĥ and M̂ defined as

Ĥ = K̂ −
(

gt + f ′(0)

f (0)
V

)
ÎN (28)

and

M̂ = sÎN + 2
μ′(x2)

μcr

x ⊗ xT , (29)

where we introduced a short-hand notation

s = 1

μcr

[
μ(x2) + gt + f ′(0)

f (0)
V

]
(30)

and the diadic product x ⊗ xT stands for the (rank-one) N × N matrix with components
xixj .

As a result, we find that the mean density of stationary points (19) is expressed in terms
the rescaled variables as

ρ(V,x, [U ]) = Ns expN

(
x2

2f ′(0)
μ2(x2) − V 2

2f (0)

)∫
dte−Nt2/2Ds(t,V , [U ]), (31)

Ds(t,V , [U ]) = 〈|det(Ĥ + M̂)|〉GOE, (32)

where Ns is the required normalisation constant and 〈. . .〉GOE denotes the average with re-
spect to the standard GOE measure P(Ĥ )dĤ ∝ exp(−N TrĤ 2/4) dĤ . Now we can use the
rank-one character of the second term in (29) which implies the following identity

det(Ĥ + M̂) =
[

1 + 2
μ′(x2)

μcr

GH (x)

]
det(Ĥ + sÎ ), (33)

where

GH (x) = xT 1

Ĥ + s Î
x (34)

is a diagonal element of the resolvent of the random matrix Ĥ + s Î . Note that with the
parameter s being real as required by the identity (33), the resolvent can take arbitrary large
values when an eigenvalue of the random matrix H occurs close enough to −s. As in the
large N limit the eigenvalues of GOE matrices fill in densely the interval (−2,2) [52] we
can expect the resolvent to retain strong fluctuations for |s| < 2. Outside that interval how-
ever we may expect self-averaging of the resolvent. The explicit calculation performed in
the Appendix 2 confirms this intuition, and establishes the magnitude of the fluctuations
inside the spectrum. Namely, we show that for N → ∞ the distribution function of GH (x)

tends to the Cauchy law centered around the mean value 〈GH (x)〉GOE = 1
2 s x2 and with the

widths 
 = 〈|GH (x) − 〈GH (x)〉GOE|〉GOE = 1
2

√
4 − s2 for |s| < 2, and 
 = 0 otherwise. We

therefore conclude that the first factor in (33) is typically of the order of unity at every real-
isation of the disorder. Recalling that only factors of order exp{O(N)} in the mean density
of stationary points are relevant for calculating the complexity, we can safely disregard the
mentioned factor in the rest of the calculation by replacing (32) with

Ds(t,V , [U ]) = 〈|det(Ĥ + sÎ )|〉GOE (35)

and remembering the relation (30) of s to parameters of the problem.
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For the asymptotic analysis of complexity we further use the result proved in [51]. It
essentially claims that the expectation of the determinant in the right-hand side of (35) can
be represented in the large N limit as

Ds(t,V , [U ]) ∝ expNΦ(s) (36)

where the function Φ(s) = Φ(−s) is given explicitly by

Φ(s ≥ 0) = s2

4
− θ(s − 2)

[
s
√

s2 − 4

4
+ ln

(
s − √

s2 − 4

2

)]
. (37)

The method used in [51] was based on relating Ds(t,V , [U ]) to the mean eigenvalue density
of GOE, and subsequent lengthy saddle-point analysis of an integral representation for that
density. Perhaps, a shorter way to understand the above asymptotics is to notice that actually,

Φ(s) =
∫ 2

−2
ln |s + λ|ρsc(λ) dλ, ρsc(λ) = 1

2π

√
4 − λ2, (38)

where the integral is understood in the sense of the principal value. The above formula can be
verified by applying ideas from statistical mechanics to the evaluation of Ds(t,V ). A math-
ematically rigorous method of analysing this type of problems can be found in a detailed
paper by Boutet de Monvel, Pastur and Shcherbina [58]. An alternative, and very transpar-
ent way of heuristic asymptotic analysis based on the concept of a functional integral was
proposed in a recent insightful work by Dean and Majumdar [59]. We provide an overview
of the Dean-Majumdar approach in the Appendix 3.

We thus arrive to the following expression for the density of stationary points

ρ(V,x, [U ]) ∼ Ns exp

(
N

[
x2

2f ′(0)
μ2(x2) − V 2

2f (0)

])∫ ∞

−∞
dteN[Φ(s)−t2/2] (39)

valid in the large-N limit up to factors of order of unity.

2.2 The Cumulative Complexity of Stationary Points for a Smooth Confinement

The mean total number of the stationary points for a given shape of the spherically-
symmetric confining potential is obtained by further integrating this density over the position
x and over the values of the potential V :

〈#s〉 =
∫

RN

dx
∫ ∞

−∞
ρ(V,x, [U ]) dV . (40)

It is natural to use the fact that the integrand is spherically symmetric by passing to the
integration over the radial variable q = x2 and the angular coordinates Ω , so that dx ∝
q(N−2)/2dqdΩ . As a result, we have

〈#s〉 ∝
∫ ∞

0
eNL(q) dq

q
F(q), F(q) =

∫ ∞

−∞

∫ ∞

−∞
e−NS[V,q,t] dt dV, (41)

where

S(V , q, t) = V 2

2f (0)
+ t2

2
− Φ(s), L(q) = q

2f ′(0)
μ2(q) + 1

2
lnq, (42)
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with (cf. (30))

s = 1

μcr

[
μ(q) + gt + f ′(0)

f (0)
V

]
(43)

and Φ(s) given by (37). As usual, we disregarded in (41) all constant proportionality factors
which will be restored at a later stage from the normalisation condition.

For our analysis of this expression in the limit N � 1 we find it convenient to evaluate
first the integrals over t, V with the Laplace method. We find F(q) ∝ exp [−NS(V∗, t∗)],
with V∗ and t∗ being the values minimizing S(V , q, t) for a given q , and satisfying the
system of equations:

V∗ = f ′(0)

μcr

dΦ(s)

ds

∣∣∣∣
s=s∗

, t∗ = g

μcr

dΦ(s)

ds

∣∣∣∣
s=s∗

, (44)

where according to (43)

s∗ = 1

μcr

[
μ(q) + gt∗ + f ′(0)

f (0)
V∗
]

≡ 1

μcr

[
μ(q) + μ2

cr

f ′(0)
V∗
]
, (45)

the second equality following from the obvious relation t∗ = gV∗/f ′(0) implied by (44), and
the definition of g2 in (20). Moreover, for s∗ ≥ 0 (37) implies that

dΦ(s)

ds

∣∣∣∣
s=s∗

= 1

2

[
s∗ − θ(s∗ − 2)

√
s2∗ − 4

]
. (46)

Assuming first 0 ≤ s∗ ≤ 2, the first of the equations (44) together with (45), (46) immediately
yields

V∗ = μ(q)
f ′(0)

μ2
cr

, s∗ = 2μ(q)
1

μcr

, and t∗ = μ(q)
g

μ2
cr

. (47)

Obviously, this solution is compatible with our assumption 0 ≤ s∗ ≤ 2 only as long as
0 ≤ μ(q) ≤ μcr . On the other hand, assuming s∗ > 2 the first of the equations (44) solved
together with (46) yields the relation

s∗ = μcr

f ′(0)
V∗ +

(
μcr

f ′(0)
V∗
)−1

, (48)

which is consistent with our assumption. Substituting for s∗ from (45) one immediately finds

V∗ = f ′(0)

μ(q)
, t∗ = g

μ(q)
for μ(q) > μcr . (49)

In fact, V∗ is nothing else but the most probable value of the potential V (x) at a stationary
point of the energy surface H(x) situated at the distance |x| = √

NR from the origin. We
see that V∗ experiences a drastic change in its behaviour at the values of radial parameter q

at which the curve μ(q) crosses the value μcr = √
f ′′(0) and zero. To simplify our analy-

sis we assume in the following that μ(q) > 0 and μ′(q) ≥ 0, ∀q ≥ 0, i.e. that μ(q) is a
non-decreasing function of its argument. Then the equation μ(q) = μcr has either a sin-
gle solution q = q∗ when μ(0) < μcr < μ(q → ∞), or no solution at all (this happens if
μcr < μ(0), or μcr > μ(∞)).
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The corresponding values of S(V∗, t∗, q) can be found by substituting (47) and (49)
into (42). In particular, the expression (48) in the regime (49) implies the identity 1

2 [s∗ −√
s2∗ − 2] = μcr

μ(q)
, so that Φ(s∗) = μ2

cr

2μ2 + 1
2 − ln μcr

μ(q)
, and we obtain after some simple alge-

bra:

S(V∗, t∗, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1

2
+ ln

(
μcr

μ(q)

)
, μ(q) ≥ μcr ,

−μ2(q)

2μ2
cr

, μ(q) < μcr .

(50)

Substituting F(q) ∝ exp [−NS(V∗, t∗, q)] back to the integral (41), we see that the total
number of stationary points is given by

〈#s〉 = Ns

∫ ∞

0
e

N
2 �(q) dq

q
, (51)

where Ns encapsulates all the necessary normalisation factors, and

Ψ (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qμ2(q)

f ′(0)
+ 1 − ln

(
μ2

cr

μ2(q)

)
+ lnq, for μ(q) ≥ μcr ,

qμ2(q)

f ′(0)
+ μ2(q)

μ2
cr

+ lnq, for μ(q) < μcr .

(52)

To find Ns it suffices to consider the special case where μ(q) → ∞ when only the mini-
mum at the origin survives and hence 〈#s〉 → 1. This condition fixes with exponential in N

accuracy

Ns ∼ e−N lnRcr , (53)

where the scale Rcr was defined in (20). Taking this factor into account, and assuming that
the equation μ(q) = μcr has a single solution q = q∗, we split the integration range in (51)
into two natural pieces 0 < q ≤ q∗ and q > q∗. Then the exponential in N part of the mean
number of stationary points can be found from

〈#s〉 =
∫ q∗

0
e

N
2 Ψ<(q) dq

q
+
∫ ∞

q∗
e

N
2 Ψ>(q) dq

q
, (54)

where remembering f ′(0) = −μ2
crR

2
cr we defined

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ψ>(q) = 1 − w + lnw, where w = qμ2(q)

μ2
crR

2
cr

, for μ(q) ≥ μcr ≡ μ(q∗),

Ψ<(q) = w
R2

cr

q

(
1 − q

R2
cr

)
+ ln

(
q

R2
cr

)
, for μ(q) < μcr ≡ μ(q∗).

(55)

As the maximum of the function Ψ>(q) = 1 − w + lnw is achieved at w = 1 and equal
to zero we have Ψ>(q) ≤ 0,∀q > q∗, and hence only the first integral in (54) can yield a
positive complexity

Σs = lim
N→∞

1

N
ln 〈#s〉 = lim

N→∞
1

N
ln

(∫ q∗

0
e

N
2 Ψ<(q) dq

q

)
. (56)
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To extract the large-N asymptotics of the latter integral we calculate

dΨ<(q)

dq
= dw

dq

(
R2

cr

q
− 1

)
+ 1

q

(
1 − μ2(q)

μ2
cr

)
, μ(q) < μ(q∗) = μcr . (57)

The analysis below proceeds separately for two cases: 0 < q∗ < R2
cr and 0 < R2

cr < q∗.

1. Let us first consider q∗ < R2
cr , with the goal to demonstrate that for such a choice there is

no contribution to positive complexity. We have dw
dq

> 0, so that the derivative in (57)

is obviously positive: dΨ<(q)

dq
> 0, q < q∗. Using that w∗ = w(q∗) = q∗

R2
cr

< 1 we see

Ψ<(q) < Ψ<(q∗) = 1 − w∗ + lnw∗ < 0 and conclude that in such a case there is no
exponentially large contribution to the integral, hence no positive complexity.

2. Assume now 0 < R2
cr < q∗. We shall demonstrate the existence of a point q0 ∈ [R2

cr , q∗]
where the function Ψ<(q) attains a positive maximum Ψ<(q0) > 0. This in turn will
imply a positive complexity.
To begin with, R2

cr < q∗ implies μ(R2
cr ) < μ(q∗) = μcr as the function μ(q) is non-

decreasing. Then (57) implies dΨ<(q)

dq
|q=R2

cr
= 1

R2
cr

(
1 − μ2(R2

cr )

μ2
cr

)
> 0. Note that from (55)

follows Ψ<(q < R2
cr ) < 0, and Ψ<(q = R2

cr ) = 0. Therefore Ψ<(q) > 0 in some right
vicinity of q = R2

cr .
On the other hand, we have already seen above that Ψ<(q∗) < 0 and also (57) implies

dΨ<(q)

dq

∣∣∣∣
q=q∗

= dw

dq

∣∣∣∣
q∗

(
q2

cr

q∗
− 1

)
< 0. (58)

Then by continuity there must exists a point q = q1 ∈ (R2
cr , q∗) such that Ψ<(q1) = 0.

Remembering Ψ<(q = R2
cr ) = 0 and positivity of Ψ<(q) to the immediate right of q =

R2
cr we conclude on the existence of another point q = q0 ∈ (R2

cr , q1) where the function
Ψ<(q) attains at least one positive maximum Ψ<(q0) > 0.

Combining all these facts, we see that under these conditions, (56) leads to the positive
cumulative complexity of stationary points:

Σs = 1

2
max

q∈(R2
cr ,q∗)

[
μ2(q)

μ2
cr

(
1 − q

R2
cr

)
+ ln

(
q

R2
cr

)]
> 0, (59)

as long as μ(R2
cr ) < μcr . Taking into account definitions (20), the latter condition can be

written in terms of the covariance function of the random potential as

μ

(
− f ′(0)

f ′′(0)

)
<
√

f ′′(0). (60)

This inequality is nothing else but precisely the condition of instability of the zero-
temperature replica symmetric solution of the associated problem in statistical mechanics,
see (152) in the Appendix 4.

For the simplest case of a parabolic confinement (6) with μ(q) = μ < μcr we can easily
find the cumulative complexity as an explicit function of μ. Indeed, the point where Ψ<(q)

attains its maximum is given by q0 = R2
cr

μ2
cr

μ2 , and

Σs = 1

2

[
−1 − ln

μ2

μ2
cr

+ μ2

μ2
cr

]
≥ 0, for μ ≤ μcr (61)
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in full agreement with the result reported earlier in [51]. When approaching the critical value
μ = μcr the cumulative complexity vanishes quadratically: Σs ≈ (1 − μ

μcr
)2.

Let us show that such type of critical behaviour is generic. Introducing the short-hand
notations q̃ = q/R2

cr and μ̃(q̃) = μ(q)

μcr
, we rewrite Ψ<(q) as

Ψ<(q̃) = (1 − q̃)μ̃2(q̃) + ln q̃. (62)

The condition of criticality (60) is simply μ(R2
cr )/μcr = 1, which amounts in new notations

to μ̃(1) = 1. Hence we introduce the parameter δ = 1 − μ̃(1) which controls the distance to
the criticality. Obviously, the interval R2

cr ≤ q ≤ q∗ shrinks to zero when δ → 0, so every-
where in the critical region q̃ − 1 = ε � 1, and we can approximate the function μ̃(q̃) by
first two terms in Taylor expansion: μ̃(q̃) ≈ μ̃(1) + εμ̃′(1) ≡ 1 − δ + εμ̃′(1). Substituting
this to (62) we obtain

Ψ<(q̃ = 1 + ε) = (2δ + O(δ2))ε −
(

1

2
+ 2μ̃′(1) + O(δ)

)
ε2 + O(ε3). (63)

To find the complexity, we should maximize this over ε. To the leading order in δ the maxi-
mum is attained at ε0 = δ/( 1

2 + 2μ̃′(1)) and the corresponding complexity is given by

Σs = 1

2
Ψ<(q̃ = 1 + ε0) = δ2

1 + 4μ̃′(1)
, (64)

which indeed always vanishes quadratically at criticality.

2.3 The Density of Minima for Smooth Spherically-Symmetric Potentials, and the
Associated Complexity

If one is interested in calculating the density of only minima, one has to perform the manip-
ulations identical to those in the first half of the preceding section leading to (31) and (35),
but using (5) rather than (4) as a starting point. Repeating all the steps, one arrives then to

ρm(V,x, [U ]) = Nm expN

(
x2

2f ′(0)
μ2(x2) − V 2

2f (0)

)∫
dte−Nt2/2Dm(t,V , [U ]) (65)

with

Dm(t,V , [U ]) ≡ Dm(s) = 〈det(Ĥ + sÎ )θ [det(Ĥ + sÎ )]〉GOE, (66)

where the variable s is given in terms of t and V by the same expression (30), and Nm is a
relevant normalisation constant. As before we use the notation 〈. . .〉GOE for the average with
respect to the standard GOE measure P(Ĥ ) dĤ ∝ exp(−NTrĤ 2/4) dĤ . To extract large-N
behaviour of the function Dm(s) we employ again the Dean–Majumdar method as explained
in the Appendix 3. In this way one finds that the function Dm(s) with the required accuracy
is given asymptotically by

Dm(s) ∝
⎧⎨
⎩

exp

{
−N2

2
Gm(s) + NTm(s)

}
, if s < 2,

exp[Nφ(s)], if s > 2,

(67)
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where the calculation sketched in the Appendix 3 gives

Gm(s) = 1

216

(
72s2 − s4 − 30s

√
12 + s2 − s3

√
12 + s2

)− ln
(s + √

s2 + 12)

6
, (68)

so that Gm(2) = 0, and φ(s) is the same as expression (37) for s > 2, i.e.

φ(s) = s2

4
−
[

s
√

s2 − 4

4
+ ln

(
s − √

s2 − 4

2

)]
. (69)

Explicit expression for the function Tm(s) can be easily found from the procedure described
in the Appendix 3, but is immaterial for our purposes, apart from the fact that continuity of
D(s) at s = 2 and the property Gm(2) = 0 implies Tm(2) = φ(2) = 1.

Correspondingly, the density of minima in (65) is calculated as the sum of two contribu-
tions:

ρ(1)
m = Nm expN

(
x2

2f ′(0)
μ2(x2) − V 2

2f (0)

)

×
∫ ∞

−∞
exp

(
−Nt2

2
+ N Tm(s) − N2

2
Gm(s)

)
θ(2 − s) dt, (70)

ρ(2)
m = Nm expN

(
x2

2f ′(0)
μ2(x2) − V 2

2f (0)

)

×
∫ ∞

−∞
exp

(
−Nt2

2
+ Nφ(s)

)
θ(s − 2) dt. (71)

To shorten our analysis in the large-N limit we recall that our final goal is rather to calculate
the exponential in N contribution to the mean number of minima. As in this process we
integrate the above density over the value of the potential V , and over the coordinates x
in the sample, we can search simultaneously for the optimal values of variables t and V .
Let us start with the asymptotic analysis of the second contribution, (71). The shape of the
integrand in this case coincides with that in the analysis of the density of stationary points
for s > 2, hence the optimal values are given by (see (49))

V∗ = f ′(0)

μ(q)
, t∗ = g

μ(q)
for μ(q) > μcr , (72)

where as before we introduced q = x2. In particular, the most probable values V∗ of the
potential V (x) taken over all the stationary point, or over only minima coincide in this
regime. The corresponding contribution to the density of minima is given by

ρ(2)
m ∝ exp

N

2

(
q

2f ′(0)
μ2(q) − ln

μ2
cr

μ2(q)

)
. (73)

This is again the same as contribution of the density of all stationary points in the regime
μ(q) > μcr . As we know from previous analysis, in this regime there can be no exponen-
tially many stationary points, even less so minima. Similar consideration also makes it clear
that the overall normalization factor Nm (common to both ρ(1)

m and ρ(2)
m ) in the final expres-

sion should be (within exponential accuracy) the same as one used for the total density of
stationary points in (53).
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Now we consider the contribution coming from (70), which can be conveniently rewritten
using the relation between t and s as

ρ(1)
m ∝ expN

(
q

2f ′(0)
μ2(q) − V 2

2f (0)

)

×
∫ 2

−∞
exp−N

(
1

2g2

[
μcrs − μ(q) − f ′(0)

f (0)
V

]2

− Tm(s) + N

2
Gm(s)

)
ds. (74)

When N → ∞, the integral over s will be obviously dominated by the value which
minimizes the function Gm(s). One can satisfy oneself that this minimum occurs precisely
at the boundary of the integration region s = 2. Defining s = 2 − z we expand for small
z as Gm(2 − z) ≈ z3

12 + O(z4), and after substituting this expansion back to (74) integrate
out z. This procedure yields an irrelevant pre-exponential factor, and using φ(2) = 1 the
exponential in N contribution to the density takes the form

ρ(1)
m ∝ exp

N

2

(
q

f ′(0)
μ2(q) − V 2

f (0)
+ 2 − 1

g2

[
2μcr − μ(q) − f ′(0)

f (0)
V

]2)
. (75)

Next we find that this expression is maximized at the value of the potential given by

V∗ = f ′(0)

μcr

[
2 − μ(q)

μcr

]
, (76)

and the value of the density ρ(1)
m at this maximum is proportional to

ρ(1)
m ∝ exp

N

2

(
q

f ′(0)
μ2(q) + 2 −

[
2 − μ(q)

μcr

]2)
. (77)

Now this expression can be used for extracting the exponential in N contribution to the
total mean number 〈#m〉 of minima, hence the corresponding complexity. This amounts to
multiplying the density (77) with the “volume” factor q(N−2)/2dq , integrating over the radial
variable R in the range up to q = q∗, such that μ(q) < μcr for q < q∗, and finally multiplying
with the overall normalisation factor e−N lnRcr . Taking the logarithm yields the complexity
of minima

Σm = lim
N→∞

1

N
ln〈#m〉 = lim

N→∞
1

N
ln

(∫ R∗

0
e

N
2 Ψm(q) dq

q

)
(78)

= 1

2
max

q∈(0,q∗)
Ψm(q), (79)

where

Ψm(q) = 2 + ln
q

R2
cr

− q

R2
cr

μ2(q)

μ2
cr

−
[

2 − μ(q)

μcr

]2

. (80)

Let us first consider the simplest case of a parabolic confinement μ(q) = μ < μcr , see
(6). The complexity of minima can be easily found as the function of μ/μcr . Again, the

point q0 at which Ψm(q) attains its maximum is equal to the same value q0 = R2
cr

μ2
cr

μ2 which
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delivered earlier the maximum to the function Ψ<(R), and

Σm

(
μ

μcr

)
= 1

2

[
−3 − ln

μ2

μ2
cr

+ 4
μ

μcr

− μ2

μ2
cr

]
, for μ ≤ μcr . (81)

It is evident that Σm(
μ

μcr
= 1) = 0, and it is easy to check that dΣm/dμ < 0, hence

Σm(
μ

μcr
= 1) > 0 for any μ

μcr
< 1. Close to the critical value μ

μcr
= 1 the complexity Σm

vanishes cubically: Σm ≈ 1
3 (1 − μ

μcr
)3. This is a faster decrease in comparison with the

quadratic behaviour demonstrated by the cumulative complexity from (61). In fact note that
for any μ ≤ μcr the inequality Σs − Σm = (1 − μ

μcr
)2 > 0 holds.

In a general case μ′(q) > 0 the point q0 at which the function Ψ<(q) from (55) attains
its maximum does not necessarily coincide with one which delivers the maximum to Ψm(q)

from (80). Indeed, the two functions satisfy the following relation:

Ψm(q) = Ψ<(q) − 2

[
1 − μ(q)

μcr

]2

, (82)

which implies for derivatives

d

dq
Ψm(q) = d

dq
Ψ<(q) + 4

μ′(q)

μcr

[
1 − μ(q)

μcr

]
. (83)

Hence in the regime μ(q) < μcr interesting for us here d
dq

Ψm(q) > 0 at the point of maxi-
mum of the function Ψ<(q).

As discussed in the previous section, for q� < R2
cr the derivative d

dq
Ψ<(q) is strictly

positive, and thus the derivative d
dq

Ψm(q) cannot be zero. This implies that Ψm(q) can only

have a maximum if the inequality q∗ > R2
cr holds, and the point of maximum must belong

to the interval q ∈ [R2
cr , q∗]. Below we shall prove that in fact the condition q∗ > R2

cr is
enough to ensure that complexity of minima is positive. Let us however note that the simple
arguments used to prove the positivity of the maximum of Ψs(R), hence the positivity of
the cumulative complexity Σs , are not immediately applicable in the case of the complexity

of minima. Indeed, although we have d
dq

Ψm(q)|R=R2
cr

= [1 − (
μ(R2

cr )

μ2
cr

)2] > 0, we still have

Ψm(q = R2
cr ) < 0 in view of the relation (82) and Ψ<(q = R2

cr ) = 0. But we also have at the
right end of the interval Ψm(q = q∗) < 0 and d

dq
Ψm|q∗ < 0, demonstrating impossibility to

infer positivity of the maximum of Ψm(q) inside (R2
cr , q∗) along these lines.

To circumvent this difficulty, we introduce an auxiliary function Ψa(q̃, μ̃) of two real
variables q̃ and μ̃ according to

Ψa(q̃, μ̃) = 2 + ln q̃ − q̃μ̃2 − [2 − μ̃]2. (84)

Note that Ψm(q) in (80) is obtained from the above function by replacing its arguments as
q̃ → q/R2

cr and μ̃ → μ(q)

μcr
.

Considering values of Ψa(q̃, μ̃) we easily find that the function can take positive values
only in a wedge-like region of the (q̃, μ̃) plane restricted by two boundary curves μ̃−(q)

and μ̃+(q), where

μ̃±(q̃) = 2 ±√D(q̃)

1 + q̃
, D(q̃) = 4 + (1 + q̃)(ln (q̃) − 2), (85)
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Fig. 1 A representative function
μ̃(q̃) which is monotonically
increasing and satisfies the
condition q̃∗ > 1. These
conditions are sufficient to ensure
that the corresponding Ψm(q) has
a positive maximum leading to a
positive complexity of minima

and one has to require D(q̃) ≥ 0 for the existence of these curves. Since D(q̃ = 1) = 0
and dD(q̃)

dq̃
= −1 + lnq + 1

q
≥ 0, ∀q > 0, we conclude that D(q̃ ≥ 1) ≥ 0. This implies the

region in between those two curves exists for q̃ > 1, and for q̃ → 1 the two boundary curves
approach each other and meet at the point μ̃±(q̃ = 1) = 1 (see Fig. 1).

Now, the problem of finding the complexity of minima, (78), for any monotonically in-
creasing confinement function μ(q) is equivalent to searching a maximum of the function
Ψa(q̃, μ̃) along the corresponding curve μ̃(q̃) = μ(q)/μcr in the plane (see Fig. 1). The
point q∗ appearing in our analysis is nothing else but the point of intersection of that curve
with the horizontal line μ̃ = 1, and the condition q∗ > R2

cr just means that such an inter-
section happens at some value q̃∗ > 1. But every such curve μ̃(q̃) necessarily intersects the
region between the boundary curves μ̃±(q̃), and therefore necessarily has a portion along
which the values of Ψa(q̃, μ̃) > 0. This proves that the complexity of minima is always pos-
itive as long as the condition q∗ > R2

cr holds. This is equivalent to μ(R2
cr ) < μcr which is

precisely the replica symmetry breaking condition (60).
Let us finally demonstrate that for a generic smooth confining potential the complexity

of minima vanishes always cubically at criticality, the type of critical behaviour we have
already found in the simplest case of parabolic confinement. For this we follow the same
steps as in the end of the preceding section. Using the parameter δ = 1 − μ̃(1) � 1 which
controls the distance to the criticality, we approximate in the critical region q̃ = 1 + ε, ε �
1, and use for the function μ̃(q̃) its Taylor expansion. Truncating as before at first order:
μ̃(q̃) ≈ 1 − δ + εμ̃′(1) and substituting this for μ̃ in (84), we obtain

Ψm(q̃ = 1 + ε) = −2δ2 + [2δ + 4μ̃′(1)δ − δ2)]ε

−
[

1

2
+ 2μ̃′(1) + 2(μ̃′(1))2 + O(δ)

]
ε2 + O(ε3). (86)

To find the corresponding complexity, we should maximize this over ε. To the leading order
in δ the maximum is attained at ε0 = 2δ/(1+2μ̃′(1)). Substituting this value back to (86) we
immediately find that all terms of the order of δ2 cancel, and thus at criticality the complexity
of minima behaves at least as Σs = Cδ3. To prove that the coefficient C �= 0 and to find its
actual value in terms of μ̃′(1), μ̃′′(1) requires going to the terms of order ε2 in the Taylor
expansion for μ̃(q̃), and to the order ε3 in (86). This is a straightforward but boring exercise,
and the resulting expression is not very elegant apart from the simplest case of the parabolic
confinement when μ̃′(1) = μ̃′′(1) = 0, and C = 1/3 as we have already found before.
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2.4 On Anomalous Critical Behavior of Complexities for Hard-Wall Confining Potentials

A fairly universal type of the critical behavior of both complexities Σs and Σm revealed in
the preceding sections should be compared with the results reported recently in our short
communication [55], and independently in [54]. In both papers the landscape was confined
in a finite box, chosen in [55] to be spherical of extent |x| ≤ L = R

√
N, 0 < R < ∞. On

top of such a hard-wall confinement a harmonic confining potential was superimposed to
allow a comparison with the results of statistical mechanics of the same problem studied by
the replica trick in [15]. For the sake of clarity, we will consider below only pure hard-wall
confinement, when the complexities for a given value of the radius R were found to be given
by [54, 55]:

Σs(R) = ln

(
R

Rcr

)
for R ≥ Rcr, and Σs(R) ≤ 0 otherwise, (87)

and

Σm(R) = −1 + ln

(
R

Rcr

)
for R ≥ Rm = eRcr , and Σm(R) ≤ 0 otherwise, (88)

with Rcr given by (20). Taking into account that the domain of zero-temperature replica
symmetry breaking in this particular model is just given by R > Rcr [15], we see that ap-
parently the type of behavior exemplified by (87), (88) is very different from what we have
discussed earlier in this paper. Namely, although in this case the cumulative complexity
Σs is also positive everywhere in the phase with broken replica symmetry for R > Rcr ,
the complexity of minima Σs becomes positive only starting from a larger confining radius
Rm = eRcr > Rcr . In other words, for the interval Rcr < R < Rm the broken ergodicity is
not at all accompanied by the exponentially many minima in the energy landscape. Another
peculiarity is that the complexity Σs vanishes linearly rather than quadratically with the
distance δR = R/Rc − 1 close to the ergodicity threshold.

In the framework of the present approach the function μ(q) describing the hard-wall
confinement with a radius R is formally μ(q) = 0 for q < R2 and μ(q) = ∞ for q ≥ R2.
Such a form is apparently highly singular, and does not immediately fit into the analysis of
the preceding sections. To circumvent this difficulty and to understand better the origin of
the hard-wall behavior (87), (88) within a more general framework we consider a family of
non-smooth confining potentials of the form:

μ(q) =

⎧⎪⎨
⎪⎩

0, for q < R2,

μ

√
h

(
q

R2

)
, for q ≥ R2,

(89)

where μ > 0 is a control parameter, and h(x) is an increasing, non-negative smooth concave
function h(x) > 0, h′(x) ≥ 0, h′′(x) ≥ 0 for ∀x > 1. We also assume h(1) = 0 to ensure the
continuity of μ(q), and thus existence of a single solution q = q∗ of the equation μ(q) = μcr

which as we know plays an important role in our analysis. We will be in particular interested
in understanding the behavior of complexities Σs(R) and Σm(R) in the limit μ � 1, where
the confinement described by (89) should approach a hard-wall form. We also assume the
confinement radius to satisfy R > Rcr , to allow for a positive complexity.
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The cumulative complexity of stationary points for this class of potentials is given ac-
cording to (59) by Σ(μ)

s (R) = 1
2 maxq̃∈(1,q∗) Ψ

(μ̃)
s (R̃, q̃) where

Ψ (μ̃)
s (R̃, q̃) =

{
ln q̃, for 0 < q̃ < R̃2,

ln q̃ + μ̃2h(q̃/R̃2)(1 − q̃), for R̃2 ≤ q̃ ≤ q̃∗,
(90)

and we used as usual the scaled parameter μ̃ = μ/μcr and the scaled confinement radius
R̃ = R/Rcr > 1 as well as q̃ = q/R2

cr , with the value of the parameter q̃∗ being fixed by the
condition μ̃2h(q̃∗/R̃2) = 1. Differentiating the expression (90) over q̃ gives:

dΨs

dq̃

∣∣∣∣
q̃→R̃2+

= 1

R̃2
− μ̃2[h′(1)(R̃2 − 1)], (91)

which is clearly negative for large enough μ̃, except for the special case h(1) = h′(1) = 0.
On the other hand, dΨs

dq̃
|0<q̃<R̃2 = 1

R̃2 > 0. We conclude that the function Ψ (μ̃)
s (R̃, q̃) for large

enough μ has its local maximum precisely at q̃ = R̃2. Actually, this is the global maximum,
as

d2Ψs

dq̃2

∣∣∣∣
q̃>R̃2

= − 1

R̃4
{1 + μ̃2[2R̃2h′(q̃/R̃2) + h′′(q̃/R̃2)(q̃ − 1)]} < 0, (92)

so that dΨs

dq̃
< dΨs

dq̃
|q̃→R̃2+ < 0 for all R̃2 < q̃ < q̃∗. We immediately see that the cumulative

complexity is then given simply by 1
2 ln R̃2.

Let us now shortly discuss the complexity of minima along the same lines. The analogue
of the expression (90) follows from (80), and is given by

Ψ (μ̃)
m (R̃, q̃) =

⎧⎨
⎩

ln q̃ − 2, for 0 < q̃ < R̃2,

ln q̃ − 2 + 4μ̃

√
h(q̃/R̃2) − μ̃2(1 + q̃)h(q̃/R̃2), for R̃2 ≤ q̃ ≤ q̃∗.

(93)

Differentiating the above expression, we again easily see that dΨm

dq̃
|q̃→R̃2+ < 0 for μ � 1,

except for the case h(1) = h′(1) = 0. Since dΨm

dq̃
|q̃→R̃2− is always positive, the function

Ψm(R̃, q̃) has its (global) maximum at q̃ = R̃2 and the complexity is indeed given by the
expression (88).

To investigate the behavior of both complexities in the remaining exceptional case h(1) =
h′(1) = 0, we consider a particular example h(x) = (x − 1)2. This implies q̃∗ = R̃2(1 + 1

μ̃
)

and for the case of cumulative complexity we are seeking to maximize

Ψs(q̃) = ln q̃ + μ̃2(q̃/R̃2 − 1)2(1 − q̃) (94)

over q̃ in the interval R̃2 ≤ q̃ ≤ q̃∗. For large μ̃ it is actually more convenient to introduce a
new variable y ∈ [0,1] via q̃ = R̃2(1 + y/μ̃) , and approximate Ψs(q̃) with

Ψs(y) = ln R̃2 + y2(1 − R̃2) + O(1/μ̃). (95)

In view of the inequality R̃2 > 1, the above expression attains its maximum at y = 0, and
the cumulative complexity Σs(R) is again given by the same expression (87) as in all other
cases of this family in the hard-wall limit μ � 1.
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Curiously enough, the complexity of minima Σm(R) in the case h(1) = h′(1) = 0 shows
a behavior different from (88). Taking as before h(x) = (x − 1)2, we need this time to
maximize

Ψm(q̃) = ln q̃ − 2 + 4μ̃(q̃/R̃2 − 1) − μ̃2(1 + q̃)(q̃/R̃2 − 1)2 (96)

over q̃ in the interval R̃2 ≤ q̃ ≤ q̃∗ = R̃2(1 + 1
μ̃
). Introducing again the variable y ∈ [0,1]

via q̃ = R̃2(1 + y/μ̃), and assuming μ � 1 we replace (96) with

Ψm(y) ≈ ln R̃2 − 2 + 4y + O(1/μ̃) − y2(1 + R̃2), (97)

which has its maximum at y0 = 2/(1 + R̃2) < 1. The corresponding complexity is given by

Σm = ln R̃2 − 2 + 4

1 + R̃2
, (98)

which is indeed different from (88). In particular, the last term in (98) ensures that the
complexity of minima is positive everywhere in the phase with broken ergodicity R̃ > 1,
and vanishes linearly when approaching the critical value R̃ > 1.

Thus, we have demonstrated that for every curve in the family (89) the cumulative com-
plexity in the limit μ → ∞ is indeed given by Σs(R) = 1

2 ln R̃2 ≡ lnR/Rcr , in full agree-
ment with the hard-wall confinement formula (87). As to the complexity of minima, in the
limit μ → ∞ it is generically given by (88), although the result may change if the hard-wall
profile vanishes smooth enough when approaching the point of non-analyticity, q = R2.

3 Conclusions and Open Questions

Let us briefly summarized our findings. We have demonstrated that for a generic, smooth
concave confining potentials with a continuous positive derivative the complexity extracted
from the mean number of totality of stationary points in the energy landscape is positive
simultaneously with the complexity corresponding to the mean number of minima. The
domain of parameters where those complexities are positive is precisely one where the zero-
temperature limit of statistical mechanics in such a landscape requires for its description the
concept of broken replica symmetry/broken ergodicity, (152).

On the other hand, for a non-analytic (hard-wall) confinement the boundary of non-
ergodic behaviour coincides in general with the domain of positive total complexity of sad-
dle points but not necessarily the minima. Moreover, the above analysis clearly demonstrates
that all peculiar features specific to the hard-wall confinement are due to the discontinuity
of the derivative of the confining potential.

In the case of a smooth confinement the complexity of minima vanishes cubically when
approaching the critical confinement (60), whereas the cumulative complexity vanishes
quadratically with the distance to criticality. In the Appendix 5 we follow the method by
Bray and Dean [54] and investigate the (annealed) complexities of stationary points at a
fixed value of the number of the negative eigenvalues of the Hessian, the so-called index I
of a critical point. Restricting the consideration to the simplest case of parabolic confine-
ment (6) we reveal that the only stationary points with non-vanishing complexity arising
precisely at the critical confinement μ = μcr are those for which the number of negative di-
rections stays of order of unity in the large-N limit: α = limN→∞ I

N
= 0. As we move inside

the glassy phase away from the critical value μ = μcr , stationary points with an increasing
range of indices start to have a positive complexity. This is precisely the mechanism behind
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the change from cubic vanishing typical for the complexity of minima to the quadratic van-
ishing found for the total complexity. A more detailed characterisation of stationary points
appearing precisely at the critical value μ = μcr , in particular the question of how many of
them are minima, or saddle points with a fixed number (one, two, etc.) of negative eigenval-
ues is a very interesting question deserving further, more elaborate, investigation.

In our opinion, the results of present research suggest a few more immediate questions
which are worth understanding. For example, the problem of investigating the magnitude of
sample-to-sample fluctuations of the number of stationary points is clearly very interesting,
though technically challenging. Another natural extension would be to consider our model
at finite temperatures. This project would require defining properly an analogue of the free
energy (TAP-like, [4]) landscape for the present model, and recovering the whole transition
line to the phase with broken ergodicity from counting the corresponding stationary points.
Some steps in this direction were taken in [55], but the present level of understanding re-
mains far from being satisfactory.

Finally, let us mention that the model considered in the present paper is very intimately
related [15] to the much-studied spherical model of spin glasses, which essentially corre-
sponds to a particular choice of the confining potential Vcon(x) = δ(x2 − N) which forces

the vector x to span the sphere of radius
√

N . It is natural to expect that this rather singular
limit can be approached in the present method by e.g. considering the confinement of the
form U(z) = μ(z − 1)2 and allowing for μ → ∞. This expectation is supported by recent
rigorous results [56] demonstrating that the dynamical equations known for the spherical
spin glass model are faithfully reproduced in this limiting procedure. Let us however note
that the above choice goes beyond the immediate scope of the present paper as we decided
to restrict our attention by considering only monotonically increasing confining potentials.
Actually, investigating other classes is not at all a problem, and is certainly worth doing in
view of the mentioned correspondence with the spherical model, where quite a few results
on complexities of extrema of free energy landscapes were already reported in the literature,
see for example a good review [57] and references therein. We relegate this issue, as well as
a few other possible generalisations to subsequent publications.
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Appendix 1: On a Geometric Origin of the Identity (10)

Let us start with recalling the well-known Poincare–Hopf index theorem. For any vector
field F over any compact manifold M with no zeroes on the boundary ∂M holds the identity
Ind(F)+ Ind(∂−F) = χ(M), where χ(M) is a topological invariant, the Euler characteristic
of the manifold. The index Ind of a vector field F is the sum of indices of all the singular
points. i.e. sum of indices sign det(∂iFj )|x=xk

corresponding to all Ns isolated zeroes xk of
the field: F(xk) = 0. The field ∂−F is a vector field defined in terms of the values of F on
a subset of the boundary ∂M , such that the original field F points inward on this subset of
the boundary. Precise definition of the boundary component of the formula is immaterial for
our purposes.

Consider a random surface H(x) = 1
2 xT Âx + V (x), with x ∈ R

N , V (x) being a mean-
zero random Gaussian function with the covariance (3), and the first term being a quadratic
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form involving an arbitrary non-singular real symmetric matrix Â, with detÂ �= 0. Take
any compact manifold M in R

N such that (i) all the stationary points xk of H(x) are with
probability one belong to the interior of that manifold and (ii) along the boundary ∂M of
the manifold the influence of random potential is already negligible (the simplest choice of
M would be a ball |x| ≤ L of a very large radius L → ∞). Then topological properties of
the gradient field F = ∂H(x)/∂x along the boundary ∂M are determined by the gradient
of the first term, i.e. by the vector field FA = Âx, so that Ind(∂−F) = Ind(∂−FA). Then the
Poincare–Hopf theorem implies Ind(∂H(x)/∂x) + Ind(∂−FA) = χ(M). On the other hand,
the field FA has the only zero at the origin, so that Ind(FA) ≡ sign det Â, and the Poincare–
Hopf theorem applied to FA requires sign det Â+ Ind(∂−FA) = χ(M). Comparing these two
relations we see that

Ind(∂H(x)/∂x) ≡
Ns∑
k=1

sign det

(
∂2H

∂x∂x

)∣∣∣∣
x=xk

= sign det Â (99)

for every realization of the random surface H(x).
On the other hand, the Dirac’s δ-functional measure satisfies the fundamental identity

δ

(
∂H

∂x

)∣∣∣∣det

(
∂2H

∂x∂x

)∣∣∣∣=
Ns∑
k=1

δ(x − xk), (100)

which in fact underlies the Kac–Rice formula (4). As above, the summation over xk goes
over all isolated zeros of the gradient ∂H/∂x, and δ( ∂H

∂x ) ≡∏N

i=1 δ( ∂H
∂xi

). This fact allows us
to convert the sum in the left hand-side of (99) to an integral and rewrite (99) as the identity

∫
RN

det

(
∂2H

∂x∂x

)
δ

(
∂H

∂x

)
dx = sign det Â (101)

valid for any realization of the random potential V (x). We therefore can average (101) over
the realizations, and take into account (i) independence of the first and second derivatives
for Gaussian-distributed random functions, and (ii) stationarity of the random potential, (3).
In this way we come to the relation

sign det Â =
〈
det

(
Â + ∂2V

∂x∂x

)〉∫
RN

N∏
i=1

〈
δ

(
∂H

∂xi

)〉
dx. (102)

Using the standard Fourier integrals representation for the δ-functional factors, and perform-
ing the averaging over the Gaussian gradients with the covariances (cf. (21)) 〈 ∂V

∂xi

∂V
∂xj

〉 =
− 1

N
f ′(0)δij , we see that

〈
N∏

i=1

δ

(
∂H

∂xi

)〉
=
∫

e−iuT Âx− 1
2N

uT u|f ′(0)| du
(2π)N

(103)

= 1

(2π |f ′(0)|/N)N/2
e

− N
2|f ′(0)| xT ÂT Âx

. (104)



J Stat Phys (2007) 129: 1081–1116 1105

Substituting the last expression to (102) and performing the Gaussian integral over R
N yields

the factor [det ÂT Â]−1/2 = 1/|det Â|. Then (102) is reduced to the relation

det Â =
〈
det

(
Â + ∂2V

∂x∂x

)〉
(105)

equivalent to the identity (10), which is thus verified for non-singular real symmetric matri-
ces Â. By analytic continuation it is extended to singular case as well.

Appendix 2: Distribution of the Diagonal Element of the GOE Resolvent

Our goal is to calculate the probability distribution P(G) of the diagonal element of the
resolvent (34) for GOE matrices Ĥ , in the large-N limit, for a given real value of s.

Following the standard route we first evaluate the characteristic function

χ(p) = 〈exp{ipGH(x)}〉GOE. (106)

Our first observation is that the result can depend on x only via the modulus |x| due to
the rotational invariance of the GOE probability density. This implies that we can choose
x = |x|e, with e = (1,0, . . . ,0), so that

GH(x) = x2 eT 1

Ĥ + sÎ
e = x2

N∑
n=1

(e, en)
2

s + λn

, (107)

where λn, en stand for the eigenvalues and the corresponding eigenvectors of the GOE ma-
trix Ĥ , and (e, en) is the scalar product. Remembering that the eigenvectors en and the
eigenvalues λn of the GOE matrices are statistically independent, we perform the averaging
over the eigenvectors first. To this end we recall that N GOE eigenvectors are (i) mutually
orthogonal and (ii) uniformly distributed over the unit sphere (en, en) = 1. As is well-known,
these conditions imply that in the large-N limit the projections vn = (e, en) behave like in-
dependent Gaussian variables with zero mean and variance 〈v2

n〉GOE = 1/N . Denoting 〈. . .〉v
the averaging over these variables, we can write for the characteristic function

〈exp{ipGH(x)}〉v =
N∏

n=1

∫ ∞

−∞

dvn√
2π/N

exp

{
−N

2
v2

n + ipx2 v2
n

s + λn

}

=
N∏

n=1

[
N

N − 2ipx2 1
s+λn

]1/2

=
N∏

n=1

[s + λn]1/2

[s − 2i
p

N
x2 + λn]1/2

. (108)

Remembering the remaining averaging over the JPD of GOE eigenvalues λn, we see that the
characteristic function (106) in the large-N limit can be written as the expectation value of
the ratio of square roots of the characteristic polynomials

χ(p)|N→∞ = lim
N→∞

〈 [det(s + Ĥ )]1/2

[det(s − 2i
p

N
x2 + Ĥ )]1/2

〉
GOE

. (109)

Precisely that expectation value was already calculated earlier in a different context, see (35)
and (48) of the paper [60], with the result

χ(p)|N→∞ = exp

{
x2

[
i

2
sp − |p|πνsc(s)

]}
, νsc(s) = 1

2π

√
4 − s2, |s| < 2. (110)
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The distribution P(G) immediately follows from this expression after the Fourier-transform.
Defining G̃ = GH (x)/x2 we see that the quantity is Cauchy-distributed:

P(G̃) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

νsc(s)

π2ν2
sc(s) + (G̃ − s

2 )2
, |s| < 2,

δ

(
G̃ − s

2

)
, |s| > 2.

(111)

Appendix 3: An Overview of the Dean–Majumdar Functional Integral Approach

Our aim in this section is the calculation of large-N asymptotics of the required GOE aver-
ages. The most economic way of arriving to the desirable expressions known to us relies on
a heuristic method introduced by Dean and Majumdar [59]. We however have every reason
to believe that one can arrive to the same results by employing a rigorous (and, necessarily,
tedious) mathematical procedures described for a very closely related problem in a paper by
A. Boutet de Monvel, L. Pastur and M. Scherbina [58].

The quantities of interest for us are the GOE averages featuring in (35) and (66), i.e.:

Ds(s) = 〈|det(Ĥ + sÎ )|〉GOE

∝
[

N∏
i=1

∫ ∞

−∞
dλi

]
N∏

i=1

|λi + s|
∏

1≤i<j≤N

|λi − λj |e− N
4
∑N

i=1 λ2
i , (112)

Dm(s) = 〈θ(Ĥ + sÎ )det(Ĥ + sÎ )〉GOE

∝
[

N∏
i=1

∫ ∞

−s

dλi

]
N∏

i=1

(λi + s)
∏

1≤i<j≤N

|λi − λj |e− N
4
∑N

i=1 λ2
i , (113)

where θ -factor is equal to unity when its argument is a positive definite matrix and is
zero otherwise, and λi stands for N real eigenvalues of the matrix Ĥ . We have used that
in each case the functions to be averaged depend only on the matrix eigenvalues. The
average is taken over an ensemble of matrices with the probability density P(Ĥ )dĤ ∝
exp(−NTrĤ 2/4) invariant with respect to orthogonal transformations Ĥ → OĤÔT , and
this allows us to perform in a standard way [52] the integration over N(N − 1)/2 angu-
lar variables (eigenvectors of Ĥ ). The procedure yields just an overall normalization factor,
and the remaining expression is given by (112). At this point it is worth mentioning, that
the GOE averages of the type as above can be viewed as performed over a Gibbs measure
describing an interacting gas of eigenvalues, and there are methods to developed a rigorous
mean-field description of such a model in the large-N limit [58].

In a similar in spirit, but much less formal way Dean and Majumdar suggested to calcu-
late integrals of this type by replacing the multiple integration over the eigenvalues λi with
a functional integration over the density of eigenvalues, defined as

ρN(λ) := 1

N

N∑
i=1

δ(λ − λi). (114)
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Exploiting this density, we have the formal identities

N∏
i=1

φ(λi) = expN

∫
lnφ(λ)ρN(λ)dλ, (115)

N∏
i<j

ψ(λi, λj ) = exp
N2

2

∫
lnψ(λ,λ′)ρN(λ)ρN(λ′) dλdλ′, (116)

for a suitable choice of functions φ(λ) and ψ(λ,λ′) = ψ(λ′, λ).
In this way the integrands of the multivariable integrals (112) can be viewed as function-

als f [ρ] of the density ρN(λ), and introducing the (functional) Dirac δ-function, one can
formally write for such type of integrals

[
N∏

i=1

∫ b

a

dλi

]
f [ρN ] =

∫
D[ρ]f [ρ]

[
N∏

i=1

∫ b

a

dλi

]
δ[ρ − ρN ], (117)

where f [ρ] is the functional f expressed in terms of the density ρ. The integrals over the
eigenvalues on the right hand side of this expression can be conveniently evaluated after
using the standard formal Fourier representation for the functional δ-function:

δ[ρ − ρN ] =
∫

D[ω] exp

(
iN

∫ ∞

−∞
ω(t)[ρ(t) − ρN(t)]dt

)
, (118)

=
∫

D[ω] exp

(
iN

∫ ∞

∞
ω(t)ρ(t)dt − i

N∑
i=1

ω(λi)

)
, (119)

with a suitably normalized measure D[ω]. The integration over the eigenvalues is now triv-
ially performed, resulting in

[
N∏

i=1

∫ b

a

dλi

]
δ[ρ − ρN ]

∝
∫

D[ω′] exp

(
iN

∫ ∞

−∞
ω′(t)ρ(t)dt + N ln

(∫ b

a

e−iω′(t)dt

))
. (120)

For N � 1 the main contribution to the above integral should come from the stationary point
of the exponent with respect to variations in the field ω′ satisfying the equation

ρ(λ) =
⎧⎨
⎩

exp(−iω′(λ))∫ b

a
exp(−iω′(λ′))dλ′ , if a ≤ λ ≤ b,

0, otherwise.

(121)

It is clear from the above that
∫ b

a
ρ(λ)dλ = 1, and that −iω′(λ) = lnρ(λ) + const for a ≤

λ ≤ b. This yields, up to an overall constant factor, the relation
[

N∏
i=1

∫ b

a

dλi

]
δ[ρ − ρN ] ∝ exp

(
−N

∫ b

a

ρ(t) ln(ρ(t))dt

)
. (122)

Note, that looking at our system as a kind of “eigenvalue gas”, this factor is simply a standard
entropic contribution associated with the density of particles.
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Let us apply this method for our problem, i.e. to the calculation of the required GOE
averages. Denoting the range of integration in each case by Rs and Rm, we have for j ∈
{s,m}

Dj (s) =
∫

D[ρ] exp

(
−N2

2
Gj [ρ] + NTj [ρ]

)
, (123)

where

Gj [ρ] = 1

2

∫
Rj

λ2ρ(λ)dλ −
∫
Rj

∫
Rj

ρ(λ)ρ(λ′) ln(|λ − λ′|)dλdλ′, (124)

Tj [ρ] =
∫
Rj

ρ(λ) ln(|λ + s|)dλ −
∫
Rj

ρ(λ) lnρ(λ)dλ. (125)

In the limit N → ∞ in (123) the main contribution to the functional integral in (123)
comes obviously from the value of ρ which minimises the functional Gj . The stationary
condition is found in the standard variational procedure after incorporating the normalisation
condition

∫
Rj

ρ(λ)dλ = 1 via a Lagrange multiplier. The resulting integral equation reads:

λ2

4
+ C =

∫
Rj

ρ(λ′) ln(|λ − λ′|)dλ′ for λ ∈ Rj . (126)

Differentiating this equation with respect to λ gives

λ

2
=
∫
Rj

ρ(λ′)dλ′

λ − λ′ for λ ∈ Rj , (127)

where the integral must now be understood as a Cauchy principal value.
Solution of singular integral equations of the type (127) is discussed extensively in [61].

The necessary inversion formula essentially depends on whether the solution is required to
be bounded at each end. In general, given a function g(λ) for λ ∈ (a, b) and the integral
equation

g(λ) =
∫ b

a

f (λ′)dλ′

λ − λ′

there is a unique solution f (λ) which remains bounded at the endpoints a and b provided
that holds ∫ b

a

g(λ′)dλ′
√

(b − λ′)(λ′ − a)
= 0.

In our case, the above condition implies

0 =
∫ b

a

λ′dλ′
√

(b − λ′)(λ′ − a)
= π(a + b)

2
. (128)

Hence, such a solution only exists in the case a = −b ≡ L/2, and in the latter case is given
by the inversion formula

ρ(λ) =
√

L2/4 − λ2

2π2

∫ L/2

−L/2

λ′dλ′√
L2/4 − λ′2(λ′ − λ)

, (129)
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=
√

L2/4 − λ2

2π2

[∫ L/2

−L/2

dλ′√
L2/4 − λ′2 + λ

∫ L/2

−L/2

dλ′√
L2/4 − λ′2(λ′ − λ)

]
, (130)

=
√

L2/4 − λ2

2π
, (131)

where in the final line we have used the identity

∫ b

a

dx√
(b − x)(x − a)(x − z)

= 0 for z ∈ (a, b). (132)

The normalization condition fixes L, and the resulting eigenvalue density is given by

ρsc(λ) = 1

2π

√
4 − λ2, for λ ∈ [−2,2] (133)

and zero otherwise, which is just the well-known Wigner semi-circle law. In such a case
the only dependence on the variable s in the exponent of Ds(s) comes from the first term∫ 2

−2 ρsc(λ) ln(|λ + s|)dλ in (125) which leads to (37) as described in the text.
At the same time, when evaluating Dm(s) we have an additional constraint on the density

ρ, as the latter must vanish for λ < −s. Obviously, the solution (133) can satisfy such a
constraint only as long as s > 2, and has to be modified in the opposite case s > 2. As shown
in [61] there always exists a solution of this type of integral equations which is bounded only
at one end of the integration range. The solution which remains bounded at the upper end of
the integration range is given by

ρDM(λ) = 1

2π2

√
L − s − λ

λ + s

∫ L−s

−s

√
λ′ + s

L − s − λ′
λ′dλ′

λ − λ′ , (134)

where L is a constant to be determined by the normalization. The integral was further eval-
uated by Dean and Majumdar and the resulting density is given, for our choice of the GOE
measure, by

ρDM(λ) =
⎧⎨
⎩

1

4π

√
L − λ − s

λ + s
[L + 2λ], if 0 ≤ λ + s ≤ L,

0, otherwise,

(135)

where this time

L = 2

3

(
s +
√

s2 + 12
)
. (136)

Note that s → 2 implies L → 4 and the Dean–Majumdar density (135) reverts in this limit
to the Wigner semicircular law (133).

Inserting the above function ρDM in the definitions of Gm and Tm, see (124), (125) and
performing the integrations with help of MATHEMATICA yields

Gm[ρDM ] ≡ Gmin(s)

= 1

216

(
72s2 − s4 − 30s

√
12 + s2 − s3

√
12 + s2 + 54(3 + 4 ln 6)

)

− ln
(
s +
√

s2 + 12
)
, (137)
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which is our expression (69), as well as a formula for Tm[ρDM ]. The latter formula is how-
ever irrelevant for finding the complexity of minima, as our analysis reveals that the com-
plexity is determined by value s → 2 when obviously Tm[ρDM ] → Tm[ρsc].

Appendix 4: Analysis of the Replica-Symmetric Solution for a
Spherically-Symmetric Confining Potential

The calculation of the de-Almeida-Thouless condition in the general energy surface of the
form (11) requires only very minor modifications in comparison with the case of a parabolic
confinement (6) considered in detail in [15]. Applying the procedure of Ref. [15] yields the
following exact expression for the averaged replicated partition function:

〈Zn
β〉 = CN,nN

Nn/2e
β2

2 Nnf (0)

∫
Q>0

(detQ)−(n+1)/2e−βNΦn(Q)dQ, (138)

where

Φn(Q) =
n∑

a=1

U

(
qaa

2

)
− 1

2β
ln(detQ) − β

∑
a<b

f

[
1

2
(qaa + qbb) − qab

]
, (139)

where CN,n is a known numerical constant and N is assumed to satisfy the constraint N > n.
The form of the integrand in (138) is precisely one required for the possibility of evalu-

ating the replicated partition function in the limit N → ∞ by the Laplace (“saddle-point”)
method. The free energy is then given by

F∞ = lim
N→∞

1

N
〈F 〉 = −T

2
ln(2πe) − 1

2T
f (0) + lim

n→0

1

n
Φn(Q), (140)

where the entries of the matrix Q are chosen to satisfy the stationarity conditions: ∂Φn(Q)

∂qab
= 0

for a ≤ b. This yields, in general, the system of n(n + 1)/2 equations:

1

2
μ(qaa) − 1

β
[Q−1]aa − β

n∑
b(�=a)

f ′
[

1

2
(qaa + qbb) − qab

]
= 0, a = 1,2, . . . , n (141)

and

− 1

β
[Q−1]ab + βf ′

[
1

2
(qaa + qbb) − qab

]
= 0, a �= b, (142)

where f ′(x) stands for the derivative df/dx and we used the convention (12).
The Replica Symmetric Ansatz amounts to searching for a solution to (141), (142) within

subspace of matrices Q = QRS > 0 such that qaa = qd , for any a = 1, . . . , n, and qa<b =
q0. The system of equations is easy to solve and to obtain in the replica limit n → 0 the
following relations:

qd = T

μd

− 1

μ2
d

f ′
(

T

μd

)
, q0 = − 1

μ2
d

f ′
(

T

μd

)
, (143)

where we denoted for brevity μd ≡ μ(qd).
The stability analysis of this solution amounts to expanding the function Φn(Q) in (139)

around the extremum point up Q = QRS to the second order in deviations: Φ = ΦSP +
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δΦ + 1
2δ2Φ . The stationarity condition amounts to δΦ = 0 yielding the system (141), (142).

The term δ2Φ is a quadratic form in independent fluctuation variables δqab, a ≤ b and can
be generally written as δ2Φ =∑(ab),(cd) δq(ab)G(ab),(cd) δq(cd). As usual the stable extremum
corresponds to the positive definite quadratic form, and along the critical line the quadratic
form becomes semi-definite. Checking positive definiteness of δ2Φ amounts to finding the
(generalized) eigenvalues � of the matrix G(ab),(cd) = ∂2Φ

∂qab∂qcd
. It is easy to see that in our

case the quadratic form can be written as

δ2Φ = μ′(qd)

2

n∑
a

(δqab)
2 + T

2
Tr[δQ(QRS)

−1δQ(QRS)
−1] − 1

T

∑
ab

f ′′(Dab)δD
2
ab, (144)

where we introduced short-hand notations δDab = 1
2 (δqaa + δqbb − 2δqab) and Dab =

qd − qab . The corresponding eigen-equations for generalized n(n + 1)/2 component eigen-
vectors η(ab) with a < b can be written straightforwardly by repeating the analysis of [15]
and are given for T > 0 by:

∑
cd

(Q−1
RS)acη(cd)(Q

−1
RS)db + 1

T 2
f ′′(Dab)(δDab)

+ δab

[
2

T
μ′(qd) −

∑
c

f ′′(Dac)(δDac)

]
= �∗η(ab). (145)

As the entries of the matrix QRS are given by qab = q0 + (qd − q0)δab , its inverse Q−1 has
the same form (Q−1)ab = p0 + (pd − p0)δab , with p0 and pd − p0 are given in the limit
n → 0 by

p0 = − q0

(qd − q0)2
= 1

T 2
f ′
(

T

μd

)
, pd − p0 = 1

qd − q0
= μd

T
. (146)

Now we can follow faithfully the lines of the classical work by De Almeida and Thouless [3]
and to provide an explicit construction of the families of eigenvectors with components
η(ab) of different symmetry. For the model with parabolic confinement this construction was
discussed in [15] and goes through here without any modification. There are three different
families of eigenvectors, first two yielding only eigenvalues λ∗ with positive real part, hence
stable. The dangerous third family of eigenvectors is that satisfying the constraints:

η
(III)

(aa) = 0, ∀a;
∑

d

η
(III)

(ad) = 0, ∀a. (147)

The equations (145) are then reduced to a single equation

[
(pd − p0)

2 − 1

T 2
f ′′(qd − q0)

]
η

(III)

(ab) = �∗η(III)

(ab) , ∀a �= b. (148)

and substituting here (146) we find that the replica symmetric solution is stable as long as

μ2
d ≥ f ′′

(
T

μd

)
(149)
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with the equality μ2
d = f ′′( T

μd
) providing the condition of the replica symmetry breaking

transition. Solving the latter together with (143) is easy after introducing the auxiliary vari-
able τ = T

μd
. This gives finally the transition temperature line in the form

TAT = τ
√

f ′′(τ ), (150)

where τ satisfies the equation

μ

(
τ − f ′(τ )

f ′′(τ )

)
=√f ′′(τ ). (151)

In particular, the transition at zero temperature T → 0 requires τ → 0, hence the replica
symmetric solution at zero temperature is stable as long as the inequality

μ

(
− f ′(0)

f ′′(0)

)
≥√f ′′(0). (152)

is satisfied, with the equality sign standing for the transition condition to the region with
broken replica symmetry.

Appendix 5: Complexity of Stationary Points with a Given Index

In this appendix we outline the calculation of complexity for the stationary points with a
given index I(Ĥ ) (the number of negative eigenvalues of the Hessian Ĥ ) for our model.
We closely follow the method developed by Bray and Dean in [54], which allows one to
perform the calculation for the extensive values of the index scaled with N as I = αN ,
where 0 ≤ α < 1. For simplicity we consider only the case of parabolic confinement, with
constant μ(z) = μ.

Repeating the same steps as in [51], the expected value of the number N (μ,α) of sta-
tionary points with a given value of α can be straightforwardly shown to be given by (cf.
(9)):

〈N (μ,α)〉 = 1

sN

1

2N

√
2

N + 2

(
N

π

)N(N+1)/4

×
∫

dĤ |det(sIN + Ĥ )|δ(I(sIN + Ĥ ) − Nα)e− N
4 [TrĤ 2− 1

N+2 (TrĤ )2], (153)

where we denoted s = μ/
√

f ′′(0) ≡ μ/μcr .
The integration over the real, symmetric matrix Ĥ is in the standard way reduced to an in-

tegral over its eigenvalues λi , and further to the functional integral over the mean eigenvalue
density, (114), see Appendix 2. This gives:

〈N (μ,α)〉 = 1

sN

Ψ (μ,α)

D
, (154)

where

Ψ (μ,α) =
∫

D[ρ] exp(−N2S2[ρ] + NS1[ρ, s])

× δ

(∫ ∞

−∞
ρ(λ)dλ − 1

)
δ

(∫ −s

−∞
ρ(λ)dλ − α

)
. (155)
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The expressions appearing in the exponential in (155) are given by

S2[ρ] = 1

4

∫ ∞

−∞
ρ(λ)λ2dλ − 1

4

(∫ ∞

−∞
ρ(λ)λdλ

)2

− 1

2

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρ(λ′) ln(|λ − λ′|)dλdλ′, (156)

and

S1[ρ, s] =
∫ ∞

−∞
ρ(λ) ln(|s + λ|)dλ −

∫ ∞

−∞
ρ(λ) lnρ(λ)dλ

− N

2(N + 2)

(∫ ∞

−∞
ρ(λ)λdλ

)2

. (157)

The denominator D appearing in (154) is a normalization factor which can also be repre-
sented as a functional integral and is given by

D =
∫

D[ρ] exp(−N2S2[ρ] + NS ′
1[ρ])δ

(∫ ∞

−∞
ρ(λ)dλ − 1

)
, (158)

where

S ′
1[ρ] = −

∫ ∞

−∞
ρ(λ) lnρ(λ)dλ − N

2(N + 2)

(∫ ∞

−∞
ρ(λ)λdλ

)2

. (159)

As N → ∞, the main contribution to the functional integral in (155) comes from the func-
tion ρ which minimizes S2[ρ]. By using the definition of the mean eigenvalue,

λ̄ :=
∫ ∞

−∞
ρ(λ)λdλ, (160)

and further introducing the function f defined as

f (x) = ρ(x + λ̄), (161)

we rewrite S2[ρ] in the following form:

S2[f ] = 1

4

∫ ∞

−∞
f (x)x2dx − 1

2

∫ ∞

−∞

∫ ∞

−∞
f (x)f (x ′) ln(|x − x ′|)dxdx ′. (162)

We now need to find the function f which minimizes (162) subject to the constraint∫
f (x)dx = 1. A simple variational calculation (cf. Appendix 3) shows that the minimizer

is the usual Wigner semi-circle density, given by

f (x) =
√

4 − x2

2π
. (163)

The value of λ̄ can now be fixed using the restriction on the index given by the second
δ-functional factor in (161). This leads to

α = 2

π

∫ −h/2

−1

√
1 − x2dx, (164)

where h = s + λ̄. Each value of α ∈ [0,1] then corresponds to a unique value of h ∈ [−2,2].
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We can apply the same variational procedure to the normalization factor D. The only
difference is that the functional integration in the denominator does not contain the restric-
tion on index, which results in second term in S ′

1 minimized by the value λ = 0. On the
other hand, the terms containing S2 appear in both D and Ψ , and therefore cancel from their
ratio in (154) when we apply the asymptotic evaluation of the integrals in the limit N → ∞.
Likewise, the term of the form

∫
ρ(λ) logρ(λ)dλ will cancel between the numerator and the

denominator. Consequently, the relation (154) is reduced asymptotically to

〈
N (μ,α)

〉∼ 1

sN
exp

(
N

[∫ 2

−2
f (x) ln(|x + h|) − 1

2
λ̄2

])
, (165)

where λ = h − s, and h is related to α by (164). For the semicircular form of f (x) the
integral above can be explicitly calculated:

1

2π

∫ 2

−2

√
4 − x2 ln |x + h|dx = −1

2
+ h2

4
. (166)

Substituting this result to (165) yields the final form of the complexity corresponding to a
given index:

Σ(s,α) = −1

2
+ h2

4
− (h − s)2

2
− ln s. (167)

The analysis of this expression is convenient to perform separately for α = 0 and α > 0.

1. The relation (164) for α = 0 implies h = 2. Inserting this in (167) gives

Σ(s,0) = 1

2
− (2 − s)2

2
− log s . (168)

This expression is zero at s = 1, and taking the derivative with respect to s gives

∂

∂s
Σ(s,0) = 2 −

(
s + 1

s

)
≤ 0 (169)

with equality achieved only for s = 1. We see that Σ(s,0) is decreasing with s and hence
is positive for 0 < s < 1. Also ∂2

∂s2 Σ(s,0) = 1
s2 − 1, ∂3

∂s3 Σ(s,0) = − 2
s3 . Thus, the first

non-vanishing derivative at s = 1 is the third derivative, implying that the complexity of
stationary points with α = 0 must vanish cubically as s → 1. This agrees with the general
analysis of complexity of minima performed earlier in the paper.

2. Equation (164) implies h < 2 for α > 0. Differentiating (167) with respect to s gives

∂

∂s
Σ(s,α) = h −

(
s + 1

s

)
< 0. (170)

Thus, Σ(s,α) is strictly decreasing as a function of s, and vanish linearly at some critical
point scr which can be easily found numerically as a function of α. Observing that

Σ(1, α) = − (h − 2)2

4
< 0 (171)

we conclude that the critical value scr (α) must satisfy scr (α) < 1 for any α > 0. In other
words, the complexity of stationary points with any extensive index I = O(N) is still
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negative at the point of ergodicity breaking s = 1 (i.e. μ = μcr = √
f ′′(0) in the origi-

nal notations), and starts to be positive already inside the phase with broken ergodicity:
μcr(α > 0) <

√
f ′′(0).

If we considered the annealed average of the total number of stationary points, rather
than those with a fixed index, this would be equivalent to integrating 〈N (μ,α)〉 over all
values of α. In the limit N � 1 such an integral will obviously be dominated by the value
of α which maximizes Σ(s,α). As dα/dh �= 0 for |h| < 2 the maximum occurs when

0 = ∂

∂h
Σ(s,α) = s − h

2
, (172)

so that h = 2s. At this point of maximum

Σtot (s) = s2 − 1

2
− log s. (173)

This shows that complexity of all stationary points tends to zero as s → 1, and by taking
derivatives we find that at s = 1 the first derivative vanishes but the second one is non-zero.
Consequently, the (annealed) complexity related to the total number of stationary points
vanishes as (1 − s)2 as s → 1, as indeed was found in [51] by a different method.

Moreover, the last result can be used to show that the critical value scr (α)—defined as
s at which the complexity with a given α vanishes—must monotonously decrease with α

increasing. First observe that in fact we have shown that Σ(h/2, α) > 0 which implies
scr (α) > h/2. The value scr (h) by definition solves Σ(scr (h),h) = 0. As h decreases with
α increasing, it is enough to show that dscr/dh > 0. Taking the derivative with respect to h

and rearranging gives

dscr

dh
= −

(
∂Σ/∂h

∂Σ/∂s

)
= scr − h/2

scr + s−1
cr − h

> 0 (174)

as required.
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